JFI Seminar/Closs Lecture: Teresa Head-Gordon (University of California)

3:45–4:45 pm GCIS W301/W303

Gordon Center for Integrative Science

929 E. 57th Street

The combinatorial size of chemical molecule space, which compounds under variable synthetic, catalytic, and/or non-equilibrium conditions, is vast. This makes application of first principles quantum mechanical and advanced statistical mechanics sampling methods to identify binding motifs, conformational equilibria, and reaction pathways extremely challenging, even when considering better physical models, algorithms, or future exascale computing paradigms. If we could develop new and robust machine learning approaches, ideally grounded in physical principles, we would be able to better tackle many fascinating but quite difficult chemical, biological, and materials systems. At present, the application of machine learning to (bio)chemistry is still in its infancy, and I will describe applications ranging from to chemical shift prediction, structural ensemble construction, new inhibitors against SARS-Cov-2 target proteins, and gas phase reactions exemplified by hydrogen combustion to see where machine learning is having impact.

Event Type

JFI, Seminars

May 17