News: 2020

March

Mazziotti group predicts new state of matter

March 10, 2020

Mazziotti Group research image

Discovery addresses problem of generating and moving energy efficiently.

Three scientists from the Maziotti group in the JFI have run the numbers, and they believe there may be a way to make a material that could conduct both electricity and energy with 100% efficiency—never losing any to heat or friction.

The breakthrough, published Feb. 18 in Physical Review B, suggests a framework for an entirely new type of matter, which could have very useful technological applications in the real world. Though the prediction is based on theory, efforts are underway to test it experimentally.

“We started out trying to answer a really basic question, to see if it was even possible—we thought these two properties might be incompatible in one material,” said co-author and research adviser David Mazziotti, a professor of chemistry and the James Franck Institute and an expert in molecular electronic structure. “But to our surprise, we found the two states actually become entangled at a quantum level, and so reinforce each other.”

Graduate student LeeAnn Sager began to wonder how the two states could be generated in the same material. Mazziotti’s group specializes in exploring the properties and structures of materials and chemicals using computation, so she began plugging different combinations into a computer model. “We scanned through many possibilities, and then to our surprise, found a region where both states could exist together,” she said.

“Being able to combine superconductivity and exciton condensates would be amazing for lots of applications—electronics, spintronics, quantum computing,” said Shiva Safaei, a postdoctoral researcher and the third author on the paper. “Though this is a first step, it looks extremely promising.”

Publication
Physics World


February

Takeout noodles inspire Tian, Jaeger, and Tokmakoff groups to invent remarkable synthetic tissue

February 18, 2020

JFI research image

Breakthrough creates tough material able to stretch, heal and defend itself.

While eating takeout one day, James Franck Institute scientists Bozhi Tian and Yin Fang started thinking about the noodles—specifically, their elasticity. A specialty of Xi’an, Tian’s hometown in China, is wheat noodles stretched by hand until they become chewy—strong and elastic. Why, the two materials scientists wondered, didn’t they get thin and weak instead?

They started experimenting, ordering pounds and pounds of noodles from the restaurant. “They got very suspicious,” Fang said. “I think they thought we wanted to steal their secrets to open a rival restaurant.”

But what they were preparing was a recipe for synthetic tissue—that could much more closely mimic biological skin and tissue than existing technology.

“It turns out that granules of common starch can be the missing ingredient for a composite that mimics many of the properties of tissue,” said Fang, a UChicago postdoctoral researcher and lead author of a new paper published Jan. 29 in the journal Matter. “We think this could fundamentally change the way we can make tissue-like materials.”

The breakthrough allows the synthetic tissue to stretch in multiple directions but to heal and defend itself by reorganizing its internal structures —which is how human skin protects itself. The discovery could one day lead to applications from soft robotics and medical implants to sustainable food packaging and biofiltration.

Publication