News: Research

2017

Chin group settle debate over how exotic quantum particles form

June 22, 2017

Cheng Chin

Implications for universality.

New research by physicists at the University of Chicago settles a longstanding disagreement over the formation of exotic quantum particles known as Efimov molecules. The findings, published last month in Nature Physics, address differences between how theorists say Efimov molecules should form and the way researchers say they did form in experiments. The study found that the simple picture scientists formulated based on almost 10 years of experimentation had it wrong—a result that has implications for understanding how the first complex molecules formed in the early universe and how complex materials came into being.

“I have to say that I am surprised,” Chin said. “This was an experiment where I did not anticipate the result before we got the data.”

The data came from extremely sensitive experiments done with cesium and lithium atoms using techniques devised by Jacob Johansen, previously a graduate student in Chin’s lab who is now a postdoctoral fellow at Northwestern University. Krutik Patel, a graduate student at UChicago, and Brian DeSalvo, a postdoctoral researcher at UChicago, also contributed to the work.

Publication


New method uses heat flow to levitate variety of objects

February 15, 2017

Research image

Undergraduates in Chin group lead breakthrough work.

Third-year Frankie Fung and fourth-year Mykhaylo Usatyuk led a team of UChicago researchers who demonstrated how to levitate a variety of objects—ceramic and polyethylene spheres, glass bubbles, ice particles, lint strands and thistle seeds—between a warm plate and a cold plate in a vacuum chamber.

“They made lots of intriguing observations that blew my mind,” said Cheng Chin, professor of physics, whose ultracold lab in the Gordon Center for Integrative Science was home to the experiments.

Publication


New SPIFF method improves accuracy of imaging systems

February 4, 2017

Research image

Collaborative work by the Dinner, Rice, and Scherer groups

The newly developed SPIFF (single-pixel interior filling function) method provides a way to detect and correct systematic errors in data and image analysis used in many areas of science and engineering.

“Anyone working with imaging data on tiny objects — or objects that appear tiny — who wants to determine and track their positions in time and space will benefit from the single-pixel interior filling function method,” said co-principal investigator Norbert Scherer.

Publication


2016

Chin group confirms theory describing principles of phase transitions

November 3, 2016

Chin research image

Ultracold atoms unveil a universal symmetry of systems crossing continuous phase transitions.

Publication
 


New Device Steps Toward Isolating Single Electrons for Quantum Computing

May 19, 2016

Research image

The Schuster Group has integrated trapped electrons with superconducting quantum circuits.

“A key aspect of this experiment is that we have integrated trapped electrons with more well-developed superconducting quantum circuits,” said graduate student Ge Yang, lead author of the Physical Review X paper that reported the group’s findings. The team captured the electrons by coaxing them to float above the surface of liquid helium at extremely low temperatures.

Publication